Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Death Differ ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589495

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) that have impaired differentiation can transform into leukemic blasts. However, the mechanism that controls differentiation remains elusive. Here, we show that the genetic elimination of Proteinase 3 (PRTN3) in mice led to spontaneous myeloid differentiation. Mechanistically, our findings indicate that PRTN3 interacts with the N-terminal of STAT3, serving as a negative regulator of STAT3-dependent myeloid differentiation. Specifically, PRTN3 promotes STAT3 ubiquitination and degradation, while simultaneously reducing STAT3 phosphorylation and nuclear translocation during G-CSF-stimulated myeloid differentiation. Strikingly, pharmacological inhibition of STAT3 (Stattic) partially counteracted the effects of PRTN3 deficiency on myeloid differentiation. Moreover, the deficiency of PRTN3 in primary AML blasts promotes the differentiation of those cells into functional neutrophils capable of chemotaxis and phagocytosis, ultimately resulting in improved overall survival rates for recipients. These findings indicate PRTN3 exerts an inhibitory effect on STAT3-dependent myeloid differentiation and could be a promising therapeutic target for the treatment of acute myeloid leukemia.

2.
Cancer Commun (Lond) ; 43(6): 637-660, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120719

RESUMO

BACKGROUND: Tumors possess incessant growth features, and expansion of their masses demands sufficient oxygen supply by red blood cells (RBCs). In adult mammals, the bone marrow (BM) is the main organ regulating hematopoiesis with dedicated manners. Other than BM, extramedullary hematopoiesis is discovered in various pathophysiological settings. However, whether tumors can contribute to hematopoiesis is completely unknown. Accumulating evidence shows that, in the tumor microenvironment (TME), perivascular localized cells retain progenitor cell properties and can differentiate into other cells. Here, we sought to better understand whether and how perivascular localized pericytes in tumors manipulate hematopoiesis. METHODS: To test if vascular cells can differentiate into RBCs, genome-wide expression profiling was performed using mouse-derived pericytes. Genetic tracing of perivascular localized cells employing NG2-CreERT2:R26R-tdTomato mouse strain was used to validate the findings in vivo. Fluorescence-activated cell sorting (FACS), single-cell sequencing, and colony formation assays were applied for biological studies. The production of erythroid differentiation-specific cytokine, erythropoietin (EPO), in TME was checked using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA, magnetic-activated cell sorting and immunohistochemistry. To investigate BM function in tumor erythropoiesis, BM transplantation mouse models were employed. RESULTS: Genome-wide expression profiling showed that in response to platelet-derived growth factor subunit B (PDGF-B), neural/glial antigen 2 (NG2)+ perivascular localized cells exhibited hematopoietic stem and progenitor-like features and underwent differentiation towards the erythroid lineage. PDGF-B simultaneously targeted cancer-associated fibroblasts to produce high levels of EPO, a crucial hormone that necessitates erythropoiesis. FACS analysis using genetic tracing of NG2+ cells in tumors defined the perivascular localized cell-derived subpopulation of hematopoietic cells. Single-cell sequencing and colony formation assays validated the fact that, upon PDGF-B stimulation, NG2+ cells isolated from tumors acted as erythroblast progenitor cells, which were distinctive from the canonical BM hematopoietic stem cells. CONCLUSIONS: Our data provide a new concept of hematopoiesis within tumor tissues and novel mechanistic insights into perivascular localized cell-derived erythroid cells within TME. Targeting tumor hematopoiesis is a novel therapeutic concept for treating various cancers that may have profound impacts on cancer therapy.


Assuntos
Eritropoese , Neoplasias , Animais , Camundongos , Medula Óssea/fisiologia , Diferenciação Celular , Mamíferos , Neoplasias/metabolismo , Pericitos , Microambiente Tumoral
3.
Clin Transl Immunology ; 12(2): e1441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855558

RESUMO

Objectives: Ruxolitinib, a Janus kinase (JAK) 1/2 inhibitor, demonstrates efficacy for treating steroid-resistant acute graft-versus-host disease (SR-aGVHD) following allogeneic stem cell transplantation (allo-HSCT). Myeloid-derived suppressor cells (MDSCs) have a protective effect on aGVHD via suppressing T cell function. However, the precise features and mechanism of JAK inhibitor-mediated immune modulation on MDSCs subsets remain poorly understood. Methods: A total of 74 SR-aGVHD patients treated with allo-HSCT and ruxolitinib were enrolled in the present study. The alterations of MDSC and regulatory T cell (Treg) populations were monitored during ruxolitinib treatment in responders and nonresponders. A mouse model of aGVHD was used to evaluate the immunosuppressive activity of MDSCs and related signalling pathways in response to ruxolitinib administration in vivo and in vitro. Results: Patients with SR-aGVHD who received ruxolitinib treatment achieved satisfactory outcomes. Elevation proportions of MDSCs before treatment, especially polymorphonuclear-MDSCs (PMN-MDSCs) were better to reflect the response to ruxolitinib than those in Tregs. In the mouse model of aGVHD, the administration of ruxolitinib resulted in the expansion and functional enhancement of PMN-MDSCs and the effects could be partially reversed by an anti-Gr-1 antibody in vivo. Ruxolitinib treatment significantly elevated the suppressive function of PMN-MDSCs through reactive oxygen species (ROS) production by Nox2 upregulation as well as bypassing the activated MAPK/NF-κB signalling pathway. Additionally, ex vivo experiments demonstrated that ruxolitinib prevented the differentiation of mature myeloid cells and promoted the accumulation of MDSCs by inhibiting STAT5. Conclusions: Ruxolitinib enhances PMN-MDSCs functions through JAK/STAT and ROS-MAPK/NF-κB signalling pathways. Monitoring frequencies and functions of MDSCs can help evaluate treatment responses to ruxolitinib.

4.
Sci Transl Med ; 13(604)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321317

RESUMO

Clinical outcomes from granulocyte transfusion (GTX) are disadvantaged by the short shelf life and compromised function of donor neutrophils. Spontaneous neutrophil death is heterogeneous and mediated by multiple pathways. Leveraging mechanistic knowledge and pharmacological screening, we identified a combined treatment, caspases-lysosomal membrane permeabilization-oxidant-necroptosis inhibition plus granulocyte colony-stimulating factor (CLON-G), which altered neutrophil fate by simultaneously targeting multiple cell death pathways. CLON-G prolonged human and mouse neutrophil half-life in vitro from less than 1 day to greater than 5 days. CLON-G-treated aged neutrophils had equivalent morphology and function to fresh neutrophils, with no impairment to critical effector functions including phagocytosis, bacterial killing, chemotaxis, and reactive oxygen species production. Transfusion with stored CLON-G-treated 3-day-old neutrophils enhanced host defenses, alleviated infection-induced tissue damage, and prolonged survival as effectively as transfusion with fresh neutrophils in a clinically relevant murine GTX model of neutropenia-related bacterial pneumonia and systemic candidiasis. Last, CLON-G treatment prolonged the shelf life and preserved the function of apheresis-collected human GTX products both ex vivo and in vivo in immunodeficient mice. Thus, CLON-G treatment represents an effective and applicable clinical procedure for the storage and application of neutrophils in transfusion medicine, providing a therapeutic strategy for improving GTX efficacy.


Assuntos
Neutropenia , Neutrófilos , Idoso , Animais , Morte Celular , Fator Estimulador de Colônias de Granulócitos , Humanos , Transfusão de Leucócitos , Camundongos
5.
Stem Cell Res Ther ; 11(1): 446, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076973

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

6.
Nat Commun ; 11(1): 3704, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709869

RESUMO

FGF-2 displays multifarious functions in regulation of angiogenesis and vascular remodeling. However, effective drugs for treating FGF-2+ tumors are unavailable. Here we show that FGF-2 modulates tumor vessels by recruiting NG2+ pricytes onto tumor microvessels through a PDGFRß-dependent mechanism. FGF-2+ tumors are intrinsically resistant to clinically available drugs targeting VEGF and PDGF. Surprisingly, dual targeting the VEGF and PDGF signaling produces a superior antitumor effect in FGF-2+ breast cancer and fibrosarcoma models. Mechanistically, inhibition of PDGFRß ablates FGF-2-recruited perivascular coverage, exposing anti-VEGF agents to inhibit vascular sprouting. These findings show that the off-target FGF-2 is a resistant biomarker for anti-VEGF and anti-PDGF monotherapy, but a highly beneficial marker for combination therapy. Our data shed light on mechanistic interactions between various angiogenic and remodeling factors in tumor neovascularization. Optimization of antiangiogenic drugs with different principles could produce therapeutic benefits for treating their resistant off-target cancers.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator 2 de Crescimento de Fibroblastos/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias/tratamento farmacológico , Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Biomarcadores Tumorais , Pressão Sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Permeabilidade Capilar , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais/efeitos dos fármacos , Hipóxia Tumoral , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Nat Immunol ; 21(9): 1119-1133, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719519

RESUMO

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here, we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transitions between subpopulations and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers and therapeutic targets at single-cell resolution.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Neutrófilos/fisiologia , Peritonite/imunologia , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Homeostase , Humanos , Camundongos , Análise de Sequência de RNA
8.
Front Immunol ; 11: 626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373117

RESUMO

Pathogen-initiated chronic inflammation or autoimmune diseases accelerate proliferation and promote differentiation of hematopoietic stem cells (HSCs) but simultaneously reduce reconstitution capacity. Nevertheless, the effect of acute infection and inflammation on functional HSCs is still largely unknown. Here we found that acute infection elicited by heat-inactivated Escherichia coli (HIEC) expanded bone marrow lineage-negative (Lin)- stem-cell antigen 1 (Sca-1)+cKit+ (LSK) cell population, leading to reduced frequency of functional HSCs in LSK population. However, the total number of BM phenotypic HSCs (Flk2-CD48-CD150+ LSK cells) was not altered in HIEC-challenged mice. Additionally, the reconstitution capacity of the total BM between infected and uninfected mice was similar by both the competitive repopulation assay and measurement of functional HSCs by limiting dilution. Thus, occasionally occurring acute inflammation, which is critical for host defenses, is unlikely to affect HSC self-renewal and maintenance of long-term reconstitution capacity. During acute bacterial infection and inflammation, the hematopoietic system can replenish hematopoietic cells consumed in the innate inflammatory response by accelerating hematopoietic stem and progenitor cell proliferation, but preserving functional HSCs in the BM.


Assuntos
Células da Medula Óssea/fisiologia , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Inflamação/imunologia , Doença Aguda , Animais , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Quimeras de Transplante
9.
Cancer Biol Med ; 17(1): 142-153, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296582

RESUMO

Objective: Epithelial cancers often originate from progenitor cells, while the origin of hepatocellular carcinoma (HCC) is still controversial. HCC, one of the deadliest cancers, is closely linked with liver injuries and chronic inflammation, which trigger massive infiltration of bone marrow-derived cells (BMDCs) during liver repair. Methods: To address the possible roles of BMDCs in HCC origination, we established a diethylnitrosamine (DEN)-induced HCC model in bone marrow transplanted mice. Immunohistochemistry and frozen tissue immunofluorescence were used to verify DEN-induced HCC in the pathology of the disease. The cellular origin of DEN-induced HCC was further studied by single cell sequencing, single-cell nested PCR, and immunofluorescence-fluorescence in situ hybridization. Results: Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs, and not from recipient mice. Furthermore, the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model. DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs. Conclusions: These results suggested that BMDCs are an important origin of HCC, which provide important clues to HCC prevention, detection, and treatments.


Assuntos
Células da Medula Óssea/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas/patologia , Fígado/citologia , Animais , Biomarcadores Tumorais/genética , Transplante de Medula Óssea , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Separação Celular/métodos , Variações do Número de Cópias de DNA , Dietilnitrosamina/administração & dosagem , Dietilnitrosamina/toxicidade , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Hibridização in Situ Fluorescente , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Masculino , Camundongos Transgênicos , Análise de Célula Única/métodos , Quimeras de Transplante , Sequenciamento Completo do Genoma
10.
Cancer Biol Med ; 16(3): 606-617, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31565489

RESUMO

OBJECTIVE: More than half of human glioblastomas show EGFR gene amplification and mutation, but EGFR inhibitors have not been effective in treating EGFR-positive glioblastoma patients. The mechanism behind this type of primary resistance is not well understood. The aim of this study was to investigate gefitinib resistance in glioblastoma, and explore ways to circumvent this significant clinical problem. METHODS: MTT method was used to test the cell viability after EGFR-positive glioblastoma cells were treated with indicated drugs; real-time quantitative PCR method was included to detect the TNFα mRNA levels in glioma tissues and cell lines. ELISA was introduced to measure the TNFα protein levels in cell culture supernatant of glioblastoma cells treated with gefitinib. Western blot was used to detect the activity change of intracellular kinases in drug-treated glioblastoma cells. Two mouse xenograft tumor models were carried out to evaluate the in vivo effects of a combination of EGFR and TNFα inhibitors. RESULTS: We found that glioblastoma resistance to gefitinib may be mediated by an adaptive pro-survival TNFα-JNK-Axl signaling axis, and that high TNFα levels in the glioblastoma microenvironment may further intensify primary resistance. A combination of the TNFα-specific small-molecule inhibitor C87 and gefitinib significantly enhanced the sensitivity of glioblastoma cells to gefitinib in vitro and in vivo. CONCLUSIONS: Our findings provide a possible explanation for the primary resistance of glioblastoma to EGFR inhibitors and suggest that dual blockade of TNFα and EGFR may be a viable therapeutic strategy for the treatment of patients with chemotherapy-refractory advanced glioblastoma.

11.
Biol Proced Online ; 21: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31889917

RESUMO

BACKGROUND: Liver injury associated with acute graft-versus-host disease (aGVHD) is a frequent and severe complication of hematopoietic stem cell transplantation and remains a major cause of transplant-related mortality. Bone marrow-derived mesenchymal stem cells (BM-MSCs) has been proposed as a potential therapeutic approach for aGVHD. However, the therapeutic effects are not always achieved. In this study, we genetically engineered C57BL/6 mouse BM-MSCs with AKT1 gene and tested whether AKT1-MSCs was superior to control MSCs (Null-MSCs) for cell therapy of liver aGVHD. RESULTS: In vitro apoptosis analyses showed that, under both routine culture condition and high concentration interferon-γ (IFN-γ) (100ng/mL) stimulation condition, AKT1-MSCs had a survival (anti-apoptotic) advantage compared to Null-MSCs. In vivo imaging showed that AKT1-MSCs had better homing capacity and longer persistence in injured liver compared to Null-MSCs. Most importantly, AKT1-MSCs demonstrated an enhanced immunomodulatory function by releasing more immunosuppressive cytokines, such as IL-10. Adoptive transfer of AKT1-MSCs mitigated the histopathological abnormalities of concanavalin A(ConA)-induced liver injury along with significantly lowered serum levels of ALT and AST. The attenuation of liver injury correlated with the decrease of TNF-α and IFN-γ both in liver tissue and in the serum. CONCLUSIONS: In summary, BM-MSCs genetically modified with AKT1 has a survival advantage and an enhanced immunomodulatory function both in vitro and in vivo and thus demonstrates the therapeutic potential for prevention and amelioration of liver GVHD and other immunity-associated liver injuries.

12.
Stem Cell Res Ther ; 9(1): 340, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526668

RESUMO

BACKGROUND: Despite considerable progress in the development of methods for hematopoietic differentiation, efficient generation of transplantable hematopoietic stem cells (HSCs) and other genuine functional blood cells from human embryonic stem cells (hESCs) is still unsuccessful. Therefore, a better understanding of the molecular mechanism underlying hematopoietic differentiation of hESCs is highly demanded. METHODS: In this study, by using whole-genome gene profiling, we identified Myeloid Ectopic Viral Integration Site 2 homolog (MEIS2) as a potential regulator of hESC early hematopoietic differentiation. We deleted MEIS2 gene in hESCs using the CRISPR/CAS9 technology and induced them to hematopoietic differentiation, megakaryocytic differentiation. RESULTS: In this study, we found that MEIS2 deletion impairs early hematopoietic differentiation from hESCs. Furthermore, MEIS2 deletion suppresses hemogenic endothelial specification and endothelial to hematopoietic transition (EHT), leading to the impairment of hematopoietic differentiation. Mechanistically, TAL1 acts as a downstream gene mediating the function of MEIS2 during early hematopoiesis. Interestingly, unlike MEIS1, MEIS2 deletion exerts minimal effects on megakaryocytic differentiation and platelet generation from hESCs. CONCLUSIONS: Our findings advance the understanding of human hematopoietic development and may provide new insights for large-scale generation of functional blood cells for clinical applications.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Deleção de Genes , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/citologia
13.
Stem Cell Reports ; 11(5): 1092-1105, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392974

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) undergo self-renewal and differentiation to guarantee a constant supply of short-lived blood cells. Both intrinsic and extrinsic factors determine HSPC fate, but the underlying mechanisms remain elusive. Here, we report that Proteinase 3 (PR3), a serine protease mainly confined to granulocytes, is also expressed in HSPCs. PR3 deficiency intrinsically suppressed cleavage and activation of caspase-3, leading to expansion of the bone marrow (BM) HSPC population due to decreased apoptosis. PR3-deficient HSPCs outcompete the long-term reconstitution potential of wild-type counterparts. Collectively, our results establish PR3 as a physiological regulator of HSPC numbers. PR3 inhibition is a potential therapeutic target to accelerate and increase the efficiency of BM reconstitution during transplantation.


Assuntos
Medula Óssea/enzimologia , Células-Tronco Hematopoéticas/enzimologia , Serina Endopeptidases/metabolismo , Animais , Apoptose , Medula Óssea/efeitos da radiação , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Serina Endopeptidases/deficiência
14.
Stem Cell Reports ; 11(2): 497-513, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30033084

RESUMO

The gap in knowledge of the molecular mechanisms underlying differentiation of human pluripotent stem cells (hPSCs) into the mesenchymal cell lineages hinders the application of hPSCs for cell-based therapy. In this study, we identified a critical role of muscle segment homeobox 2 (MSX2) in initiating and accelerating the molecular program that leads to mesenchymal stem/stromal cell (MSC) differentiation from hPSCs. Genetic deletion of MSX2 impairs hPSC differentiation into MSCs. When aided with a cocktail of soluble molecules, MSX2 ectopic expression induces hPSCs to form nearly homogeneous and fully functional MSCs. Mechanistically, MSX2 induces hPSCs to form neural crest cells, an intermediate cell stage preceding MSCs, and further differentiation by regulating TWIST1 and PRAME. Furthermore, we found that MSX2 is also required for hPSC differentiation into MSCs through mesendoderm and trophoblast. Our findings provide novel mechanistic insights into lineage specification of hPSCs to MSCs and effective strategies for applications of stem cells for regenerative medicine.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína 1 Relacionada a Twist/genética , Biomarcadores , Diferenciação Celular/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Humanos , Crista Neural/citologia , Crista Neural/metabolismo
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(3): 665-670, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29950201

RESUMO

OBJECTIVE: To investigate the relationship between early peak body temperature and neutropenia duration and its potential mechanism. METHODS: A total of 111 patients with CR1 phase acute leukemia (AL) with neutropenia infection were enrolled in this study. The relationship between early peak body temperature and neutropenia duration was analyzed retrospectively, and the IL-6 serum level in patients with different peak of body temperature was detected, and the single cell culture system in vitro was established, the incorparation rate of EdU in vivo was detected, and the effect of IL-6 on mouse hematopoietic stem cells /progenitor cells was analyzed. RESULTS: Out of 111 patients with nentropenia, the body temperature <38 °C and the neutropenia duration 9.5±3.69 d were observed in 44 patients, while the body temperature >38 °C and neutropenia duration 7.33±4.20 d were observed in 69 patients, the differences between 2 groups was statistically signficant (P<0.05). The EdU test showed that the number of EdU+ hematopoietic stem cells and progenitor cells increased. The IL-6 level was different in patients with different peaks of initial bady temperature (P<0.05). The results of amimal experiment showed that the IL-6 could promote the proliferation of hematopoietic stem cells/ progenitor cells in vitro and in vivo. CONCLUSION: For patients with neutropenic infection when initial body temperature peak is <38 °C, the probability of neutropenia duration prolonging after chamotherapy increases, which may relate with promotive effect of pro-inflammatory cytokins on prliferation of hematopoietic stem cells/progenitor cells.


Assuntos
Neutropenia , Doença Aguda , Animais , Células-Tronco Hematopoéticas , Humanos , Leucemia , Camundongos , Estudos Retrospectivos , Temperatura
16.
Sci Transl Med ; 10(435)2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618559

RESUMO

The significance of developing host-modulating personalized therapies to counteract the growing threat of antimicrobial resistance is well-recognized because such resistance cannot be overcome using microbe-centered strategies alone. Immune host defenses must be finely controlled during infection to balance pathogen clearance with unwanted inflammation-induced tissue damage. Thus, an ideal antimicrobial treatment would enhance bactericidal activity while preventing neutrophilic inflammation, which can induce tissue damage. We report that disrupting the inositol hexakisphosphate kinase 1 (Ip6k1) gene or pharmacologically inhibiting IP6K1 activity using the specific inhibitor TNP [N2-(m-(trifluoromethyl)benzyl) N6-(p-nitrobenzyl)purine] efficiently and effectively enhanced host bacterial killing but reduced pulmonary neutrophil accumulation, minimizing the lung damage caused by both Gram-positive and Gram-negative bacterial pneumonia. IP6K1-mediated inorganic polyphosphate (polyP) production by platelets was essential for infection-induced neutrophil-platelet aggregate (NPA) formation and facilitated neutrophil accumulation in alveolar spaces during bacterial pneumonia. IP6K1 inhibition reduced serum polyP levels, which regulated NPAs by triggering the bradykinin pathway and bradykinin-mediated neutrophil activation. Thus, we identified a mechanism that enhances host defenses while simultaneously suppressing neutrophil-mediated pulmonary damage in bacterial pneumonia. IP6K1 is, therefore, a legitimate therapeutic target for such disease.


Assuntos
Pulmão/metabolismo , Pulmão/microbiologia , Neutrófilos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Animais , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/imunologia , Camundongos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Pneumonia Bacteriana/genética
17.
Cell Rep ; 22(11): 2924-2936, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539421

RESUMO

Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteínas Reguladoras de Apoptose/uso terapêutico , Morte Celular/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas de Ligação a Fosfato
18.
Stem Cell Reports ; 10(2): 447-460, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29358086

RESUMO

Human pluripotent stem cells (hPSCs) provide an unlimited source for generating various kinds of functional blood cells. However, efficient strategies for generating large-scale functional blood cells from hPSCs are still lacking, and the mechanism underlying human hematopoiesis remains largely unknown. In this study, we identified myeloid ectopic viral integration site 1 homolog (MEIS1) as a crucial regulator of hPSC early hematopoietic differentiation. MEIS1 is vital for specification of APLNR+ mesoderm progenitors to functional hemogenic endothelial progenitors (HEPs), thereby controlling formation of hematopoietic progenitor cells (HPCs). TAL1 mediates the function of MEIS1 in HEP specification. In addition, MEIS1 is vital for megakaryopoiesis and thrombopoiesis from hPSCs. Mechanistically, FLI1 acts as a downstream gene necessary for the function of MEIS1 during megakaryopoiesis. Thus, MEIS1 controls human hematopoiesis in a stage-specific manner and can be potentially manipulated for large-scale generation of HPCs or platelets from hPSCs for therapeutic applications in regenerative medicine.


Assuntos
Proteína Meis1/genética , Células-Tronco Pluripotentes , Proteína Proto-Oncogênica c-fli-1/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Trombopoese/genética , Receptores de Apelina/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo
19.
Cell Rep ; 20(1): 224-235, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683316

RESUMO

Reactive oxygen species (ROS)-induced cysteine S-glutathionylation is an important posttranslational modification (PTM) that controls a wide range of intracellular protein activities. However, whether physiological ROS can modulate the function of extracellular components via S-glutathionylation is unknown. Using a screening approach, we identified ROS-mediated cysteine S-glutathionylation on several extracellular cytokines. Glutathionylation of the highly conserved Cys-188 in IL-1ß positively regulates its bioactivity by preventing its ROS-induced irreversible oxidation, including sulfinic acid and sulfonic acid formation. We show this mechanism protects IL-1ß from deactivation by ROS in an in vivo system of irradiation-induced bone marrow (BM) injury. Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, was present and active in the extracellular space in serum and the BM, physiologically regulating IL-1ß glutathionylation and bioactivity. Collectively, we identify cysteine S-glutathionylation as a cytokine regulatory mechanism that could be a therapeutic target in the treatment of various infectious and inflammatory diseases.


Assuntos
Glutationa/metabolismo , Interleucina-1beta/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Motivos de Aminoácidos , Animais , Células da Medula Óssea/metabolismo , Cisteína/metabolismo , Glutarredoxinas/metabolismo , Interleucina-1beta/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
J Immunol ; 198(7): 2854-2864, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235862

RESUMO

Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation.


Assuntos
Células Precursoras de Granulócitos/metabolismo , Granulócitos/metabolismo , Hematopoese/imunologia , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Diferenciação Celular/imunologia , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Granulócitos/citologia , Hematopoese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Células Mieloides/citologia , Células Mieloides/metabolismo , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...